Publishing papers and books for autonomous
vehicle agents *

S M Veres * and L Molnar *

*School of Engineering Sciences, University of Southampton, Highfield,
Southampton, SO17 1BJ, UK. Email: s.m.veres@soton.ac.uk.

Abstract: The paper presents an information processing system for autonomously operating vehicles
where engineers can write “publications” written in English that the autonomous systems can “read”
to acquire knowledge such as various skills and behaviour policies. Knowledge about how to perform
feedback control based operations, how to do dynamical modelling, path planning, servo and tracking
control skills, vision based feedback control, etc. can also be transferred. The “publications” are similar
to engineering booklets with contents, sections, subsections in English, that can appear in HTML,
LaTex(pdf) formats. The same paper’s HTML file can be read by an agent on board the autonomous
vehicle and after reading the paper the agent knows how to alter its control of the vehicle. There is
no need for an application engineer to read a journal publication and implement it by programming,
the research engineer’s methodological work is directly utilized by the autonomous vehicle or robot.
Engineers different from the author of the “’publication” can also read the papers and learn the details
of how the vehicle operates, how decisions are reached and how skills are performed. Not only will
users of the autonomous vehicle clearly understand how it operates but will also know its limitations to
avoid misuse or misunderstanding. Users can modify English sentences in the ’publication” to modify

the vehicle’s behaviour or how its skills are performed.

Keywords: Autonomous vehicles, world modelling, map interpretation, collision avoidance, natural
language programming, artificial intelligence, publishing knowledge for autonomous systems.

1. INTRODUCTION

The process of knowledge distribution among scientist and en-
gineers is by way of publishing at conferences, in journals and
books. They describe in technical papers how a control method
works, how a navigation method proposed by an author works.
Also information processing and decision making procedures
are published by research engineers (REs). Other engineers,
let’s call them application developer engineers (ADEs), read
these technical papers, conceptualize the meanings and may opt
to implement the methods in practice. There are thousands of
control and signal processing engineering papers written every
year worldwide. Their impact on industry is patchy as many of
the papers are not read or chosen to be ignored due to financial
necessities of companies. Knowledge transfer to industry (KTI)
is slow as is well known. Cynics may even ask: "why do we
need to speed up KTI?... we are fine as we are”. Others may
say: “this is a topic for our knowledge engineers ...but artificial
intelligence is far from being able to help yet.”

Is it possible today to make a machine to “read” a technical
book written in English sentences to formulate methodologies a
the conceptual level? Some would say: “natural language inter-
faces” have been developed and you can use various controlled
English languages”. These need a priori knowledge and defini-
tion of meanings means and you need to know the grammar
”the problem is a complexity nightmare”.

* S M Veres is Professor of Autonomous Control Systems at the University
of Southampton, UK. This project was supported by hardware and software
provided by SysBrain Ltd, 3 More London Riverside, London, SE1 2RE, UK.

And yet this paper is describing an existing system whereby
engineers can write documents in English that can also contain
equations, figures and images, quotes, numbers, physical quan-
tities, etc. that suitable intelligent agents can read and apply
it in their daily work. This paper describes a system with the
following practical features:

(1) The authors and readers of these machine readable doc-
uments (called “’system English” papers, for short called
sEnglish papers) do not need to learn grammar, just to ap-
ply common sense. The most important thing for an author
is to have conceptual clarity in their area and express that
in a suitable style: ”writing skills are needed”. It only takes
a few hours to be trained as an author.

(2) The autonomous systems can read these special engineer-
ing publications in sEnglish. sEnglish publications are of
special format with contents, sections and subsections.
They may contain images, mathematical formulae to sup-
port understanding both to humans and to autonomous
systems who read them.

(3) The autonomous systems who read these documents do
not need access to a central dictionary or library of mean-
ings. There is no need for building up an infrastructure
so that autonomous systems can read sEnglish books. The
system can be used immediately, without any investment.
Autonomous vehicles (AUVs, UAVs, AGVs and space-
craft), robots, toys can be built that understand natural
language documents without a supporting infrastructure
to be set up first.

The question could be asked that: ”do we need publications
for autonomous systems that humans can also understand”.

The right question to ask is rather ’do intelligent autonomous
systems need to read publications that humans can also read”.
We argue in this paper that the answer is an emphatic yes.
This is not just a "nice feature”. Machines reading publications
is going to become a necessity if we want truly intelligent
autonomous systems in the future.

The reason for “publication for autonomous systems” is needed
is complex and the two most important factors are:

(1) We do not only need to pass on knowledge to our servant
robots” - we need to be aware what they know and how
they know it, as that can help to avoid misunderstanding.

(2) The development of mental and physical skills of intel-
ligent autonomous systems (by humans) is much faster
than how fast we can economically afford a capable hard-
ware to be replaced. Hence we need “’software upgrades”
- but how to do it? We argue that software downloads
for intelligent autonomous systems are old-fashioned and
outdated. These autonomous systems should read books
on mental and physical skills and facts about the world
from documents that their user can also read with ease and
hence they can have a shared understanding of a selected
part of the world.

In this publication system the manufacturer of a vehicle plat-
form or robot can invite publications from research engineers to
enrich the knowledge base of agents controlling these platforms
in a format that also merits current standards of scientific and
engineering publications. This could for instance be the case
for the use of autonomous vehicles, robotic pets and intelligent
toys, gardening robots or agricultural unmanned autonomous
aerial vehicles.

Publications for autonomous systems is a logical next step of
information systems in a historical perspective [Veres]:

(a) There was first verbal communication between people.

(b) Writing was developed to record events and knowledge.

(c) Later book was invented, i.e. multiple copies of written
material were printed that masses of people could read.

(d) Journal and newspaper publishing and the WWW exists
to distribute knowledge.

In the computer science community the idea of “natural lan-
guage programming” has been largely considered impossible
and impractical due to ambiguity. This paper reports about a
complete system for autonomous systems unambiguously un-
derstanding human readable books to enhance their skills and
knowledge about the world.

There is an sEnglish (short for system English) authoring Tool
(sEAT) and sEnglish reader agent system (sERA) [Sb] that
does the job described above. A simple reactive agent (SERA)
that “understands” these papers and can run on embedded
computers or on a PC [Sb] is available. The system is well
tested and has been formally verified [Sb]. This paper describes
this system of ’publications for autonomous systems”. The
methodology is illustrated on the control of an experimental
autonomous ground vehicle shown in Fig. 1.

2. OPERATIONAL PRINCIPLES

The process of publishing for autonomous systems can be split
into three parts: (1) authoring papers (2) distributing them in
HTML format for web browsers and as PDF documents (3)

Fig. 1. The autonomous ground vehicle platform used for the
demonstration.

making agents to read these papers and let them use their
content in their operations.

2.1 Authoring papers

The process of publishing for both agents and fellow engineers,
is displayed in Fig. 2. There is an authoring tool to write a

Distribution to
other engineers
» who can add to

machine
knowledge

Authoring of an
sEnglish paper by a
research engineer

A 4
Distribution to
operators of the
vehicles who can
redefine meanings of
operations, goals
and meanings.

sEnglish paper read

»] and used by the

agents controlling
the vehicle.

Fig. 2. The principle of authoring and distributing natural
language programs that are presented as sEnglish papers.

paper in English sentences where the meaning of sentences is
explained by other sentences until the meaning reaches signal
processing level and no more conceptual meanings need to
be defined: at this level MATLAB code or similar high level
code (Octave, SciLab or Phyton) is inserted that represents
“unconscientious” operations. Goals, actions and modelling
statements about the world can all be expressed in natural
language sentences. Fig. 3 displays a window of the authoring
tool SEAT. The start of an example is presented in Fig. 4 as a
web document in HTML. The high level code can be interpreted
by the agent for its realtime system (e.g. TTTech or LonWorks)

The abstract of the paper describes the conceptual relations to
other areas of knowledge and where the contribution of the
paper lies and in particular it refers to the type of hardware
system where the agent operates.

An sEnglish paper starts with an ”Abstract”, ”Conceptual struc-
tures” used and continues with sections and subsections that
describe the meanings of activities. An activity can be rep-
resented by several sentence formats meaning the same. The
actual meaning of a sentence can be always explained by other
sentences that may be explained by further sentences or they
refer to a piece of computer code.

" sEnglish Sentences Editor [@]=1e3)
Fles Metadata Compie Paper Tooks Hep i
Binary paper file: C\Program Files\sEnglishiagy_dsmolsentsnces sebk
SENGLISH. =
Meaning tag: stat executing mission ‘
Meaning tags:
ish sample.[Start sxecuting mission Miss_plan. e
‘add list to the front of list ~ SRTAISY eaiple g =
applying steering signals z
being near to a target
compute passages
compute steering signals Test syntax
defining etlbute by object v
dafining objct by atrbute .
detect obsiacle between map positions missionis_plan] Al
directing camera v|
finding target object =
fnish mission v
get frst ey in st =

inlse numericalvriable <English inteprotation | Ascurna Miss_plan, Routo, Futher._routs, Photo_target Deposi_araas Chr aro |

ke chac s |
plasteclonelyior i et B Voo ko Ot sy, Exeeuta o folwaos T oo Euthy rooo sty
Pk ep han e the oo of aclins. Sense curent pastion Cu_pos. Sanse curent

object is ampty ~ Edit & Test syntax— | | heading angle Cur_head. Get first entry Next_pos from Further_route. If Chr is not

object is not empty

obain length of st

obain ofyect for atriute of something
placing a sensor at a position
positions being nsarer than a nurnbar
prepare for rission

prepare report

readl object fom file

recagnise object on map

record missian histor

reduce numerical variable

0, then make Obsi empty. If Chr is 0, then detect obstacle position Obsi between ‘
Curr_pos and Next_pos using Tmap. If Obsiis not empty, then do the following,

Cuir_pos 1o Next_pos using terrsin map Trap. If Lefipass is not empty, then do
the following. Add LeRPass to Further_route. Get length Chr of LeAiP. FCA. If
Leftpass s smpty and Rightpass s not empty, then do the folowing. Add
RightPass to Futher_raute. Get length Chr of LefP. FCA, Extract frst entry
Next_pos fram Futher_route. Finish conditional actions on not empty Obsi.
Rapeat the folowing actions urtil futhar netice. f Next_pos is nearer to Curt_nos.
than 0.2, then leave the loop of actions. Use curtent position Pos and heating
angle Head to compute steering signals Stears towards position Next_pos. Apply
steering signals Steers. Sense current position Pos. Sense current heading angle

| |Cur_head. It Pos is nearer than ~0.8m to a target fom Photo_targets, then take

‘send all executed sentences
cending object

sensing heading

sansing position

strings being equal
taking phato
targeting and taking photo

Informal English ~
explanation.

—Fixed at

Author data: [§ M Veres, July 2008]

Web lookup
2 Paper sections: Main Astions and Goals

Fig. 3. One of the authoring tool GUIs to type in meanings of
sentences by other sentences.

3. DISTRIBUTION OF PAPERS

sEnglish papers can be either in (1) HTML formats for direct
transfer to agents through a local network or the Internet or
in (2) PDF formats for mainly human reading of the papers.
Figures 4 and 5 show the beginning of an sEnglish paper in
HTML. The contents of the paper in Fig. 5 is not for human

) ~ | @c:\program Fies\sEngish\agy_demo\agv_paper.htm = %l 738
Fe Edt Vew Favortes Took Hep
W & | @ sengish paper =l B - B - rpage~ GToosv 7

On Vehicle Modelling and Control for Agents
S. M. Veres
School of Engineering Sciences s.m.veres@soton.ac.uk

2008/11/08
SENGLISH,

sEnglish for Scientist, Engineers and Agents

This document is understandable by any agent produced by the Cognitive Agents Toolbox (wwiw.cognitive-agents-
toolbox.com) and by any sEnglish Agent (www.system-english.com).

Abstract This paper is addressing the problems of vehicle navigation and path following for the AGVM21 seties of
vehicles with operational primitives in KBS05_I0_2008 . KBS05_10_2008 contains all basic MATLAB functions'
for signal processing and a set of specific sensing, actuation and signal processing command primitives for use with
the AGVM21. The topic relies on the generic conceptual base of Sensing and Moving in the Real World. The main
actions and methods described are: 'preparation for mission, 'execution procedures of a mission', 'taking photos' and
‘laying sensors'. The technical details provide conceptual descriptions of the algorithms of 'planning a path through
given list points on route', ‘computing steering signals for path tracking', 'finding a target object’, positioning a sensor
on the ground'.

CONTENTS

1. Introduction

2. Conceptual structures used

3. Main Actions and Goals
Finish mission

Prepare for mission

Start executing mission
Targeting and taking photo

Fig. 4. The initial part of a natural language program (NLP)
written in sEnglish and represented as a web page (HTML
document).

consumption only, the agent reads the concepts and activities
from the contents and the rest of the text of the paper.

=]

'# agv_paper.pdf - Adobe Reader
Edt View Document Toos Window Help

S8 € el

*+92/v o @

CONTENTS

1. Conceptual structures used

2. Main Actions and Goals

Finish mission
Prepare for mission

Start executing mission
Targeting and taking photo

3. Technical Details

Applying steering signals
Being near to a target
Compute steering signals
Directing camera

Finding target object

Placing a sensor at a position
Prepare report

Recognise object on map
Record mission history
Sensing heading

Sensing position

Taking photo

. Appendix

Add list to the front of list
Compute passages

Defining attribute by object
Defining object by attribute
Detect obstacle between map positions
Get first entry in list
Initialise numerical variable
Make object empty

Number is a given number
Number is not zero

Object is empty

Object is not empty

Obtain length of list

850x1L00In € >

Fig. 5. The contents part of the same natural language program
(NLP) written in sEnglish and represented as a PSF docu-
ment (HTML document).

3.1 sEnglish based reactive "behavioural” agent

Reactive agents are simple and can be based on finite state
machine definitions. There are also layered agent architectures
that evolve abstractions from low level sensors to symbolic
computation and then from decision making back to coordina-
tion and planning in detail to low level.

A simple agent that has finite-state-machine transitions pre-
scribed by exit conditions and entry conditions (such as those
defined in hybrid systems or in StateFlow’™), can be defined
by the use of sEnglish sentences [Molnar]. This agent is called
reactive or situated as the environment and internal events de-
termine the course of action the agent takes. There is no delib-
eration of intentions and plan selection or plan building. Refer-
ence [Molnar] provides a methodology of how reactive agents
can be defined using an sEnglish document. The agent defined
in sEnglish can be compiled into StateFlow’™ for simulation
and into ISPL (interpreted system programming language) for
formal verification by model checking.

Another simple agent, that can execute reactive behaviour, as
defined in an sEnglish paper provided to the agent, is available
under the name sEnglish Reader Agent (SERA) in association
with the sEnglish Authoring Tool [Sb] . This agent can read
sEnglish publications in HTML format and use them to control
an embedded system or a PC based control system. Its user
interface is displayed in Fig. 6. sERA’s main functionality
includes:

e Read an sEnglish paper in HTML file from a computer
memory device, from a local network location or from a
URL as instructed via the GUI of the agent.

" sEnglish Agent Q@]@

Papers [read Sentenceslknow My world Myname Help Exit

Clear my memory i 5 CAT
x &

SENGLISH | am sEnglish agent Tom

- |==type in sentencels) here ==
Enter my instructions:

— Do you yeant me to resd 3 paper?

Read paper: C:Program FilesisEAgentiCChesignicodes html

Working directory for paper. |c:\program Files\sEdgentyoChesigninorkdir

000

wiorld file: |C:\Program FilestsEAgert\CCDesigniwvorkeirveorld mat

[] have read paper

Past Dislogue: | |

Clear history

Fig. 6. The user interface of the agent that can read and interpret
technical papers in sEnglish to carry out tasks and achieve
goals. Sentences used can be used for both execution as
well as for communication.

e Execute the meaning of a sentence entered via the GUI
dialogue field of the agent

e Receive a message over the network that asks the agent to
read an sEnglish paper from a depository on the Internet.

e Execute the meaning of a sentence send to it via network
such as ”Start mission M0O1.”.

e Display history of a dialogue between itself and other
agents, including any human contact and communications.

e Perform messaging, sensing and control operations as
prescribed by sentences with meanings as defined in the
sEnglish paper read by them.

Though simple, SERA based agents easily lend themselves to
formal verification of behaviour. The sEnglish sentences de-
fine abstractions of actions, environmental events and sens-
ing/modelling of the environment. For easy understanding of
operations for human operators, the state transitions can also
formulated by "If... , then” sentences.

3.2 Advanced, deliberative BDI agents

Belief-desire-intention (BDI) agents can be made capable to
read and use sEnglish papers with small (re-)configuration
effort. We illustrate this on the Java based Jason agents.

Agent based control of autonomous vehicles or robots is
the only proper way of writing software. Assume someone
ignores this statement and writes a code for a vehicle or
robot using a hybrid system specification as a finite state
machine with continuous flows within states (for instance in
StateFlow”™/MATLAB/Simulink by MathWorks Inc.). All this
engineer is going to create is essentially a reactive agent. Agent
research has however shown that more sophisticated agents can
be more adaptable and can have problem solving capabilities
in real autonomous missions where advance specification of
how to respond to all possible events of the environment is
impossible or uneconomical to preprogram. Hence doing au-
tonomous control via finite-state-machine definitions is viable
but is a subset of more sophisticated agent based approaches.

One of the most sophisticated deliberative architectures are the
belief-desire-intention (BDI) agents. These agents maintain a

belief data base B that is regularly updated using sensors and
signal processing and also process incoming communications
events. A list of goals are maintained by the agent that contains
the goals set by the human operator of the agent but the
agent can extend the list by temporary goals that arise from
its planning to achieve top level goals. Some events (that
can be internal or external) and all goals are associated with
actions sequences that are called plans to achieve them. In
some common and fast executing BDI languages (such as
AgentSpeak, Jason, Jack or Jade) all plans are to be declared
by the agent programmer. Although this makes the agent less
“creative” than logic inference based rational agents, as the
plan set is fixed and not generated by the agent, they have the
great advantage of fast execution and easier formal verification.
In many safety critical systems such formal verification of a
sophisticated BDI agent is crucial. Hence these kind of BDI
agents combine the advantages of deliberative agents with the
advantages of reliability that is fundamental for industry.

2 Control Planning Procedures
2.1 Preparing plan to go to a location

Sentences to use:

Prepare force sequence P to go to location Loe2 .

Available things are: Loc2(location) .

Details of the meaning:

This is a general procedure to obtain a sequence of pulse forces that
moves the satellite from one location to another . The exact code goes as
follows .
memory .

Let P be a “force sequence’ . Recall control configuration C from

Let M be the 'foree-to-thrusters conversion maitrix’ of C . Let
B the 'thruster bounds’ of C . Optimise fuel optimal force sequence P for
thruster bounds B | matrix M to go from Loc to Loc2 using sampling period
3s . The action of 'preparing plan to go to a location’ links up with jason
statement 'cont.plan_approach’ .

Resulting things are: P(force sequence) .
2.2 Preparing plan to go to centre

Sentences to use:

Prepare force sequence P to go to centre .

Details of the meaning:

This is a special case of getting a sequence of pulse forces to move the
satellite from one location to another , namely the centre of the target box in
this ease . Let LocO be a 'location’ . Set the 'vec of LocO to 70,0.0" . Pre-
pare force sequence P to go to location Loc2 . The action of 'preparing plan

to go to centre’ links up with jason statement 'cont.plan_approach_to_centre’

Resulting things are: P(force sequence) .

Fig. 7. Part of an sEnglish document that declares usability of
the sentences in a Jason agent’s logic.

The following is part of the code of a BDI agent written in
Jason that does deliberation in terms of having a set of goals,
selects the most suitable intention for short term action and a
plan that it executes before carrying on. It is about a GEO (geo-
stationary orbit) satellite’s control that keeps its position in term
of latitude and altitude so that it can carry our communication
functionality. The advantage of BDI agents in this context is
that the agent can resolve complex problems of malfunction on
board to serve its ultimate purpose of providing television and
other broadcasting. The ”// sE:” lines show sEnglish sentences
that are explained in the sEnglish publication and are presented
by a comment line of the corresponding Jason external call.

I

/l Jason/sEnglish SATELLITE CONTROL
/1 25.4.2009, SMV

/I
/l See the sEnglish document geo-pap.html

/I PLANS

@homing !get to_centre :

not in_centre & at(Loc) < —

cont.plan_approach to_centre(P,Loc) ;

'try execute(P).

/[cont.plan approach -

/I sE: Prepare force sequence P to go to location Loc2 .
/I cont.plan approach to_centre -

/I sE: Prepare force sequence P to go to centre .

(does not require naming the centre)

@exec !try execute(P) : not in_centre < —
?control hw changed;

'reconfigure control hw(C);

cont.apply controls(P,C).

// cont.apply controls(P,C)

/I sE: Apply control control force sequence P

/lusing control configuration C with feedback regulation.
@control hw !'reconfigure control hw(C) :
control hw changed < —

cont.get actuator data(D);

cont.compute _control_configuration(C,D).

// cont.get actuator data(D) -

/I sE: Get actuator data D from memory.

// cont.compute _control configuration(C,D) -

/I sE: Compute new control configuration C using actuator data D.

@emergency !send sos : total hardware failure < —

cont.get actuator data(D);

com.send(’MissCentre”,’all failed”,D).

// com.send(’"M”,”all failed”,D). -

/l sE: Send to M’ message text ’all failed’ and actuator data D.
@totalfail +total hardware failure : true < —

get thruster rw data(D);

cont.there is no feasible reconfiguration(D).

// comp.there is no feasible reconfiguration(D) :

/Il sE: There is no feasible reconfiguration for actuator data D.
//BELIEF UPDATES

@pos +at(Loc) : true < —

comp.distance(Loc) & D>2;

+not in _centre.

// comp.distance
/I sE: Compute the distance D of Loc from the centre.

The above Jason code illustrates in comments how the sEnglish
paper with its sections links up with the logic of the agent
code. Each “cont.action name” or “com.messaging” external
call in this Jason code has a corresponding subsection in the
sEnglish document that unambiguously compiles into computer
code. The agent reads the sEnglish document and its knowledge
about control skills, world modelling skills and its behaviour
constraints are updated in a way that it will have a well defined
shared understanding with the operator-engineer who will also
read the sEnglish document. This makes day to day practical
work with the autonomous system not only safe but enjoyable
for the engineers.

4. EXAMPLE: THE MISSION EXECUTION OF AN AGV

A webpage section that displays some AGV operations for
“Preparing for mission” and “Executing the mission” is dis-
played in 8. The full sEnglish paper can be found a http://system-

c:\Program Fies\sEngishlagy._demolagy._paper.htm DESIES 28
Fle Edt Vew Favortes ook Hep
W @ |4 sengish paper B- B & - [rpagev Groosy T

Prepare for mission

Sentences to use: Prepare for mission Miss_plan . Set conditions for mission Miss_plan

Available things are: Miss_plan(mission) ,

Details of the meaning: Assume 'Miss_plan, Route, Further_route, Photo_targets.Deposit_areas,Chr, Map' will be known.
Read mission Miss_plan from file 'c:\scenel.ter'. Let Further_route be the 'mission route' of Miss_plan. Let Photo_targets be
the "photo targets' of Miss_plan. Let Deposit_areas be the 'sensor locations' of Miss_plan. Let Route be the 'mission_route' of
Miss_plan. Let Map be a 'map'. Let map Map be the 'terrain map' of Mission_plan. Record mission history. Send all sentences
executed to 'human’ in realtime. Initialise Chr as 0.

Start executing mission

Sentences to use: Start executing mission Miss_plan

Available things are: Miss_plan(mission)

Details of the meaning:

Comment: knowledge assumptions.

Assume 'Miss_plan, Route, Further_route, Photo_targets. Deposit_areas.Chr' are known.
Make Obsi empty.

Action: execution of mission.

Execute the following in loop.
If Further_route is empty, then leave the loop of actions.

Sensing: collecting signals from sensors.
Sense current position Curr_pos. Sense current heading angle Cur_head.

Action: progressing on follow on part of mission path.

Get first entry Next_pos from Further_route. If Chr is not 0, then make Obsi empty.

Action: detecting obstacles

If Chr is 0, then detect obstacle position Obsi between Curr_pos and Next_pos using Tmap. If Obsi is not empty, then do the
following. Recognise terrain object Obj from obstacle position Obsi on terrain map Tmap. Compute left passage Leftpass and.

right passage Rightpass around Obs from Curr_pos to Next_pos using terrain map Tmap. If Lefipass is not empty, then do the
following. Add LefiPass to Further_route. Get length Chr of LefiP. FCA. If Leftpass is empty and Rightpass is not qypty, then

Fig. 8. Start of two sections on “Prepare for mission” and ”Start
executing mission” .

english.com [Sb]. The sentences used are concerned with mis-
sion data such as the route taken, plan of mission, list of photo
targets, locations where sensors need to be deposited, etc. Also
sensing of the environment and position is expressed in terms
of sentences. Obstacle detection checks whether there is an
obstacle on the straight line between the current position and
the next way point. If yes then a path is worked out either to the
left or right from the obstacle.

4.1 Description of the AGV movements problem

Fig. 10 displays the laboratory environment where the AGV
needs to move around. The model houses are near to each other.
At some places a passage is only twice or three times the width
of the AGV. On the other hand the AGV is not able to turn
on a smaller radius than 3 times its width. Hence its steering

I - | @c:\Program Fies\senglshiagy_demo\agy_paper.htmi BAICES 28
Fe Edt Vew Favortes ook Hebp

% & |4 sengish paper [B-8 - 8- Deoge~Proos~ "

Prepare for mission

Sentences to use: Prepare for mission Miss_plan . Set conditions for mission Miss_plan .

Available things are: Miss_plan(mission) ,

Details of the meaning: Assume 'Miss_plan, Route, Further_route, Photo_targets Deposit_areas,Chr, Map' will be known.
Read mission Miss_plan from file 'c:\scenel. ter'. Let Further_route be the 'mission route' of Miss_plan. Let Photo_targets be
the 'photo targets' of Miss_plan. Let Deposit_areas be the 'sensor locations' of Miss_plan. Let Route be the 'mission_route’ of
Miss_plan. Let Map be a 'map'. Let map Map be the 'terrain map' of Mission_plan. Record mission history. Send all sentences
executed to 'human’ in realtime. Initialise Chr as 0.

Start executing mission

Sentences to use: Start executing mission Miss_plan

Available things are: Miss_plan(mission)

Details of the meaning:

Comment: knowledge assumptions.

Assume 'Miss_plan, Route, Further_route, Photo_targets.Deposit_areas,Chr' are known.
Make Obsi empty.

Action: execution of mission.

Execute the following in loop.
If Further_toute is empty, then leave the loop of actions.

Sensing: collecting signals from sensors.

Sense current position Curr_pos. Sense current heading angle Cur_head.

Action: progressing on follow on part of mission path.

Get first entry Next_pos from Further_route. If Chr is not 0, then make Obsi empty.

Action: detecting obstacles

If Chr is 0, then detect obstacle position Obsi between Curr_pos and Next_pos using Tmap. If Obsi is not empty, then do the
following. Recognise terrain object Obj from obstacle position Obsi on terrain map Tmap. Compute left passage Leftpass and

right passage Rightpass around Obs from Curr_pos to Next_pos using terrain map Tmap. If Lefipass is not empty, then do the
following. Add LefiPass to Further_route. Get length Chr of LefiP. FCA. If Lefpass is empty and Rightpass is not qpty, then &

Fig. 9. Some of the mission description document in sEnglish.

is seriously limited. As a mission continues, the battery of the
AGYV provides less and less power that affects the speed and
angle of turning of the vehicle while the same control signal
is used from the computer. This of course necessitates the use
of feedback that in this example is put into vehicle operations
in sentences. The AGV uses camera based navigation system.

Fig. 10. The environment where the AGV (lid removed in this
picture) needs to navigate and pass through among houses.

The AGV has four onboard cameras with servo controls of
their viewing directions. In this demo also an external overhead
camera was used to detect the location of the AGV within the
environmental model and relayed back to the vehicle via a wire-
less network communication. Heading angle of the vehicle is
estimated from past sensed positions and steering angle records.
Inertial measurement units (IMUs) can be easily integrated to
enhance te precision and reliability of vehicles navigation All
data fusion and world modelling is ”programmed” in sentences.

4.2 Path planning and execution skills
There is a considerable amount of literature available on path

tracking of autonomous or semi-autonomous vehicles. Al-
though [Willms] deals with environmental constraints, direct

application of this scheme was not possible as the future path
of the vehicle is seriously limited by its current heading. What
matters is that passing through gaps can only be done by start-
ing from a bounded locality. This necessitates more careful
planning and an arbitrary way point sequence among the houses
is not executable at all. The sEnglish paper of the AGV in Fig.
10 at http://system-english.com contains sections that describes
the path execution of the AGV in English sentences that is easy
to understand and debug. Causes of possible problems in the
course of a mission also become clear to the operators, much
more so than that is possible with ordinary programming that
separates meaning from what the program does.

5. COMPARISON OF SENGLISH WITH OTHER
CONTROLLED ENGLISH TEXTS

This section reviews the best and most known controlled lan-
guages.

5.1 Comparison with Attempto

Attempto (ACE) [Attem] is a controlled English that compiles
restricted English text into first order logic (FOL), PQL, FLUX,
RuleML or to web ontology language OWL descriptive logic
(DL) that are formal knowledge representation languages. The
semantics of these formal languages need to be further defined
before sentences can have a meaning for a machine. In fact this
translation exercise into a formal language is only scratching
the surface of what one may call agent’s understanding. World
modeling, planning of actions and decision making is still a
major remaining task.

As opposed to Attempto, sEnglish sentences compile into a
high level language to form a “meaning”. If sEnglish is used
for communication then functions can be defined in this high
level language to carry out world model modifications by the
agent. This is a more direct approach to what an agent needs.

Yet the most important difference between Attempto and sEn-
glish is that

(1) Attempto is a language intended for formal world model
descriptions and communications, it would be difficult and inef-
ficent to write computer programs and procedures in Attempto.

(2) sEnglish is primarily intended for describing procedures,
system operations, it is primarily for programming.

These fundamental differences can make Attempto a comple-
mentary system sEnglish of knowledge representation to build
a joint powerful systems where underlying functionality is de-
fined in sEnglish. Such a system can describe procedures and
communication procedures of engineering systems more effec-
tively, especially for autonomous systems or distributed engi-
neering projects that involve large teams of human developers.

Syntactic differences are:

(i) Attempto uses basic grammar for sentence interpretation
rules, sEnglish uses very small amount of grammar and rec-
ognizes sentences by their definition forms.

(i) Attempto uses databases for word classes such as verbs,
nouns, adverbs, pronouns, etc. to interpret sentences. sEnglish
only needs a set of sentences each defined by a set of other
sentences and it also uses an ontology of concepts that can
consist of several words.

5.2 Comparison with Common Logic Controlled English (CLCE)

John Sowa’s CLCE [Sowa] is a way to state logic formulas
in English. Under certain conditions the translation is bidirec-
tional, i.e. from first order logic (FOL) to English and from re-
stricted English to FOL. This makes CLCE especially suitable
to articulate mathematical relationships precisely in English.
As ACE also compiles into FOL, CLCE is aimed at describ-
ing modelling relationships in a formal manner. Therefore the
comparison points made above between Attempto and sEnglish
remain valid:

(1) CLCE is a language intended for formal world model de-
scriptions and communications, it would be difficult and inef-
ficient to write computer programs and procedures in CLCE.
On the other hand sEnglish is primarily intended for describing
procedures, system operations, it is primarily for programming.

(2) CLCE uses basic grammar for sentence interpretation rules,
sEnglish uses very small amount of grammar and recognizes
sentences by their meanings.

(3) CLCE can usefully rely on databases for word classes such
as verbs for predicates, nouns for variables and prepositions for
special predicates to interpret sentences. sEnglish operates by
a self contained list of sentences each defined by a set of other
sentences and it also uses an ontology for concept names that
can consist of several words each.

5.3 Comparison with Processable English

Similarly to Attempto and CLCE, Processable English [Peng]
translates a syntactically correct English text into first order
logic (FOL) statements. Hence some of the comparison state-
ments made above for Attempto and CLCE, are also valid for
the comparison of PENG and sEnglish.

To summarize, the main differences are:

(1) sEnglish has relatively small amount of grammar relative to
ACE, CLCE or PENG.

(2) sEnglish focuses on meaning definition by other sentences
when defining a sentences, not on forming a sentence that
permits a logic representation as in ACE, CLCE and PENG.
Each sEnglish sentence has a corresponding high level program
code.

(3) sEnglish relies on meaning of sentences in terms of other
sentences. In any text each sentence ultimately compiles into a
high level code that is a function with input-output objects.

6. CONCLUSIONS

This paper describes a “’publishing” system for autonomous
systems where the documents are written in English and the
vehicles can read them to improve their navigation, sensing and
control skills with regards to self-movement and manipulation
of external objects. They can also read behaviour rules and
limitations. The advantage of using a publishing system over
traditional reprogramming” are

e The human users will share the knowledge of the agents
and that reduces misunderstanding when complex intelli-
gent behaviour is needed during autonomous missions.

e The published” papers can be distributed to agents of
a specific control program that define their deliberative

or reactive behaviour. Instead of reprogramming, the au-
tonomous systems learn from publications as humans do.

e The sEnglish publications can be distributed within a com-
pany or on the Internet as “proper publications” to make
colleagues aware of results in sensory signal processing,
navigation, environment modelling and adaptive/learning
control methods.

This paper illustrated the system on a small autonomous ground
vehicle. The system can also be used with AUVs, autonomous
UAVs, spacecraft and in most autonomous robots. Further
background reading is [Veres].

7. REFERENCES

[Attem] K Kaljurand, N E Fuchs (2007). Verbalizing OWL in Attempto
Controlled English, Verbalizing OWL: Experiences and Directions (OWLED
2007).

[Molnar] Levente Molnar and S M Veres (2009). System verification of au-
tonomous underwater vehicles by model checking. Oceans’09, 11-14 May,
Bremen, Germany.

[Peng] Rolf Schwitter (2008). Processable English, http://wikipedia.org De-
partment of Computing, Macquarie University, NSW 2109, Australia

[Sowa] Sowa, John F (2008). Common Logic Controlled English (CLCE),
http://wikipedia.org .

[Sb] (2009). sEnglish Reader Agent and Authoring Tools. SysBrain Ltd. Lon-
don, UK, 3 More London Riverside, SE1 2RE, http://system-english.com.

[Veres] Sandor M Veres (2008).Natural Language Programming of Agents and
Robotic Devices. SysBrain, London, ISBN 978-0-95584417-0-5.

[Willms] Allan R Willms and X Yang Simon (2008). Real-time robot path
planning via a distance-propagating dynamic system with obstacle clearance.
IEEE Transactions on Systems, Man and Cybernetics 38(3),884-893.

